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ABSTRACT

Investigations of aliasing effects in digital waveform sampling have revealed the existence of a

mathematical field and a pseudo-alias domain lying to the left of a "Nyquist line" in a plane defining

the boundary between two domains of sampling. To the fight of the line lies the classic alias domain.

For signals band-limited below the Nyquist limit, displayed output may show a false modulation

envelope. The effect occurs whenever the sample rate and the signal frequency are related by ratios of

mutually prime integers. Belying the principal of a 10:1 sampling ratio being "good enough", this

distortion easily occurs in graphed one-dimensional waveforms and two-dimensional images and
occurs daily on television.

1. INTRODUCTION

As in most analog systems, high frequency roll-off effects in analog strip-chart recorders are seen in

sine wave recordings when the signal frequency is increased beyond the electronic and electro-

mechanical limits of the recorder. This usually occurs after the envelope of the recorded sine wave

merges into a solid stripe. Modem digital waveform recorders and oscilloscopes contain very fast

analog-to-digital converters in the signal-processing portion, so that no longer is the analog low-pass

frequency roll-off of any concern. Waveform display or playback is nearly universally accomplished

by graphing vector or raster line approximations of the recorded waveform on the display or chart. But.

for analog playback, the data may still be sent through a digital-to-analog converter, followed by

resistive-capacitive (RC) or sin(x)/x filtering to smooth the analog output.

The Shannon (WKS) Sampling Theorem has been cited in countless articles as justification for

dropping concern about sampling distortion effects. As long as the signal frequency bandwidth is well

below the Nyquist frequency, common phrasing would say the "waveform can always be reconstructed
completely because of Shannon's Theorem."

We will soon learn that neglecting the details of sampling theory can lead to serious misinterpretations

regarding the display of certain waveforms under special conditions. Even with pure band-limited sine

wave input, serious envelope distortions can occur. The distortions occur because most cost-effective

commercial signal waveform playback and display products leave out the complete waveform

reconstruction required in accordance with the Sampling Integral[3]. As a result, when technical

accuracy is of strategic importance, particular care must be applied to interpreting the display and

reproduction of sampled-data waveforms on oscilloscopes, waveform recorders, spreadsheet charts and
even television.
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2. THEORY

Adequate reconstruction of an unaliased waveform involves coping with mathematical and physical

nuances, such as:

(a) the signal must be continuous forever in the past and in the future, in order to obtain all the

sample points necessary to perform the reconstruction, and

(b) an infinitely fast digital processor is required to make all the computations in anything
near real-time.

( c ) The Gibbs phenomenon[7] interferes with the final outcome.

Given these requirements a user can hardly be blamed for ignoring reconstruction issues when using

data from a sampling system.

2.1 DEFINITION

For this discussion, a distortionless representation of a signal on an oscilloscope screen or waveform

recorder output means that, except for a constant scaling factor, the amplitude of the displayed

waveform envelope has the same "shape" as if the Original signal were sampled at an infinite

frequency.

2.2 DISCUSSION OF PLAYBACK DISTORTION

Digital recording instrument manufacturers commonly list in their sales literature a "flat" frequency

response for their product. This claim is made due to the implicitly fast digital logic and the very high

sample rate used in the recorders. The claim of "flat response" is, again, a result of the common

misunderstanding regarding the Shannon Sampling Theorem. Both the sales engineer and the

customer may believe that a properly bandwidth-limited digitally sampled signal can be reconstructed

almost perfectly, fight up to the Nyquist limit, and the instrument does reconstruction adequately.

For some uses, textbook discussions[4] show that adequate reconstruction of the original waveform by

analog means is theoretically possible and intuitively a requirement. However, the inherently high

design and fabrication costs to include wide-band adaptive analog antialias filters can increase bottom-

line price increase and discourage customers. And, it can be counterintuitive to have an analog output

device in a digital waveform display system.

3. UNCOVERING A NEW DISTORTION

A recorder purchased and advertised as having a "flat" frequency response was set up to plot a wide

frequency sine wave input sweep generating a nearly solid waveform stripe which would document the

"flat response of the system". The signal source was from a high-quality sine wave generator from a

different manufacturer. Soon a "beat" in the waveform display was observed near a certain single

frequency on the signal generator (Figure 1). After "tuning" the frequency to reduce the frequency of

the beat, and the chart printing drive was enabled. The obvious depth of the notch in the distorted

envelope became an immediate concern since both the signal generator and the strip-chart recorder to

be in otherwise excellent operating condition.



SincetheNyquistlimit wasnot beingexceeded,presumablynoaliasedwaveformswerebeingplotted.
Theobservedresonanceeffectandtheenvelopedistortionwerethereforeabit disconcerting.Further
experimentationshowedthattheeffectwasnotafluke. A wholefamily of frequenciesshowingthis
effectwererecordedandlogged. This testwasrepeatedwith differentdevices,usingadigital storage
oscilloscopemadeby anunrelatedmanufacturer,andinput from a differentsinewavegeneratoralso
madeby adifferentunrelatedmanufacturer.Theresultswereconsistentlyrepeatable.

Later studyof thefrequenciesinvolvedresultedin thedevelopmentof a mathematical model

explaining what had happened. Various texts and papers on sampling theory, Moire' patterns, and the

like were researched, without ever locating a similar underlying model. In this model, a representative

amount of envelope distortion occurs at a signal frequency which is 6/53 (0.113207...) of the sample

rate, or roughly 1/9 of the sample rate. This result is always reproducible with recording equipment

which is in good operating condition. This result is also reproducible on a computer spreadsheet. The

reader is invited to perform an independent trial of this experiment.

3.1 INTRODUCTION TO THE MODEL

A constant frequency and constant amplitude sine wave waveform is most certainly a bandwidth-

limited waveform, expressed as

f (t)- sin (cot) (1)

where

co - 2zzf.

Assume that this waveform is sampled such that

1

f<f_ --_f_ (2)

where fc is the Nyquist frequency and f, is the sample rate. Then we know that the Nyquist limit is

not being exceeded. Now we simplify Equation 2 as

f<l
-2fs (3) '

We then generalize by defining arbitrary positive real integers m and n such that

f_<mfs
n

with the constraint that

(4)

1
m<_-n

2
or, as a redefinition of the Nyquist limit,

(5)

2m<n. (6)



Theinitial experimentalchoiceof 6 and 53 for rn and n in Equation 4 happen to yield a large, obvious

distortion. The reasoning applies to the general case of any two mutually prime integer numerators

and denominators constrained as in Equations 4 or 5.

Of course, if m is exactly one-half of n, the Nyquist frequency is being sampled and the output is

useless. For m = 1/3, 1/4, etc. similar ugly results are obtained. But there are dozens of other highly
n

visual possibilities in the range where

1 m 1
___ <__ < ._
20 n 2

The reader should be aware that this problem occurs in all sampling situations where there is a constant

frequency sample rate or a constant spatial distance between samples. Other fields in which sampling

of variable data occurs are numerous, such as meteorology, medical research, economics, statistics.

For instance, assume a key economic indicator is analyzed monthly by an economist, and the results

are published in the economics literature. The economist maintains that the indicator has a hitherto

unrecognized cycle, a cycle which is almost 106 months long. But 106 months of a monthly

published statistic could be related by 106/12 or 53/6. An obvious distortion in the data could occur

having nothing at all to do with a real cycle or a real fact.

3.2 VIDEO (TELEVISION) EXAMPLES

The pixel size in a video display partially defines the spatial sampling system having a spatial

frequency. The analog signals derived from the demodulation of the radio-frequency television carrier

signal add a time element to the display. Sampling effects in the video image also occur because of the

vertically interleaved raster lines, the field and framing rates, and the vertical retrace intervals, all of

which form other time and spatial frequencies for sampling.

A common sampling problem begins when the video image happens to contain a fine-grained

repetitive pattern, so that the spatial pitch (frequency) of the image pattern will be exactly a fractional

portion of the cathode ray tube shadow mask sampling frequency, or the vertical raster pitch.

Repetitive patterns occur in all sorts of ways, such as views of venetian blinds, clothing with patterns,

the flag of the United States, etc. Figure 3 shows an example of such an image having a large area

with a rapid spatial frequency and area of confusion. The image is that of a person wearing a jacket

with a tight hound's tooth or herringbone twill weave. Most people have seen these effects on

television. Such effects can be found daily, and the effects can be quite annoying. Television

hardware manufacturers often claim their hardware minimizes the effects of these Moire' patterns.

In Figure 4, a 512x484 virtual image was synthetically created with a C program. Each of the 484

raster lines of the image are identical, and result from calculating and repeating a raster line containing

512 samples of a sine wave waveform having a frequency which is 6/53 of the sample rate. A few

extra dark vertical bands corresponding to the distortion notch are visible as vertical stripe patterns.



4. MORE RESULTS FROM THE MODEL

4.1 PERCENTAGE OF DISTORTION ERROR

The "rule of thumb" often used to avoid severe sampling distortion near the Nyquist limit is to have a

10:1 ratio, i.e.

m

> 10

We now show that the 10:1 rule of thumb is not very practical if the system performance specification

requires that no detectable distortion. Due to the large numbers possibilities which could yield

significant ,'envelope modulation", it is necessary to understand how to calculate the amplitude tipple

(notch depth of the cusps).

The percentage of modulation is derivable as follows from the maximum phase difference

o = cos(n n). (7)
n

From the graphed figures, it is clear that the overall period of the modulation error is m * n. It is also

clear that the time m * n represents the entire cycle of the modulation error, and therefore, is the time

or horizontal distance from one peak to the next peak of the modulation tipple. The number of

samples from peak to valley of the modulation is then equal to

m_n

(8)
2

Starting from time zero, after approximately one full cycle of the signal at rate m, exactly n samples

will have been acquired.

We now convert from time units to radians of revolution. A full cycle of the signal is 2re radians, and

each sample will be spaced every 2__ff_._radians. At the end of n samples, there will be a residual angle
n

left over on the last sample. The residual must applied as a debt or credit to the following signal cycle

of 2re radians. This residual slowly accumulates over many periods to reach a maximum where the

valley of the tipple has the greatest depth. Therefore, the total length from peak to valley is, converted
from above,

(one-half # of samples) * (distance between samples ) = (m * n) • (-")9_
2 n

radians. (9)

There is a temptation to simplify Equation 9, but let's not do it yet. We need to find the left over phase

error at the valley, which is calculated by calculating the residual phase error modulo m:



(10)

Now,weneedto makeuseof thefact that m and n are mutually prime integers. Since, per

Equation 6, m is less than n, then m is the only one of the two integers which can take on the

value 2. Therefore, n , being greater than two and prime, will always be odd, and n 12 is also not a

whole number. But, if n is odd, then (n - 1) is even, and (n - 1)/2 is a whole number. Then,

m
=0+--

2

and therefore, the total phase error is

(11)

(12)

o- (13)

The normalized full-scale amplitude of the signal in the valley of the notch, ecv , is then

a_-cos(O)-cos(_--) (14)

m
Using the previous example, --- 6/53, and a v -0.937... which amounts to a 6% peak error!

n

Given that amount of error amplitude, we are curious to evaluate when the distortion error is smaller

than a certain percentage of full scale, more importantly, when the error is less than the 1-bit

quantization size in an n-bit sampling system. Referring to Figure 1, for the normalized full-scale error
value 6 such that:

m)e - 1 - a' v - 1 - cos(z • (15)
n

when applied to an 8 bit sampling system, gives an error e smaller than one bit which is

1/256 - 0.4%.



Solvingfor theratiom/n in Equation15

m 1
-- < --* arccos(1- e)
n

and applying Equation 16 to the above error of 0.4%,

(16)

m
< 0.028.

n

Therefore, for a telephone line channel sampled at 8000 times per second (a common telephone

industry sample rate for a private line) with an 8-bit analog-to-digital converter, distortion is negligible

below 224 Hz, a frequency lower than the musical note middle C.

Similarly, for a i0 bit waveform recorder (1000 points across the print head) sampling at 10,000 Hz, a

manufacturer might claim that the instrument is "flat to 5000 Hz," which is the Nyquist frequency. So

to display no modulation above one dot peak error (.1%) at full scale requires having no signals

exceeding 142 Hz! Typically, instrument manufacturers will be reluctant to admit this constraint exists

because, through no fault of their own, this constraint would make the specifications for their

instrumentation equipment appear to be rather poor!

4.2 DISCUSSION OF THE NYQUIST THEOREM

One might ask an almost obvious question at this point. Why not just "correct" the distortion effects

by putting in a variable amplification factor to remove the dip in the waveform? The answer to that is

two-fold. First, there isno a priori way to know the locations of the distortions when in most

situations the signal frequencies are random. Second, from Fourier theory, we know that a typical

waveform is not a perfect sine wave, but is really a composite of many waveforms, and may contain
some level of random noise from the "real world". Therefore the offending distortion, and only the

offending distortion, would have to be isolated first in order to perform the correction. It would be far

easier to implement the reconstruction via the Sampling Integral and let all the corrections be done

with a consistent provable algorithm. (There is still the noise problem.)

Our past attempts to perform waveform reconstruction on a computer, given unlimited computation

time, and any number of computer languages, has shown no useful solution to the reconstruction

problem. Given a finite sequence of samples, we have been able to apparently reconstruct a sine wave

without modulation distortion. But the very same algorithms fail miserably to reconstruct square

waves, and we can infer that other waveforms such as sawtooth waveforms would also show severe

reconstruction and Gibbs phenomenon errors.

4.3 GRAPHING THE FIELD OF POSSIBILITIES

The ratios m/n form a mathematical field of fractions where the numerators and denominators are

mutually prime integers or products of mutually prime integers. When graphed in Cartesian
coordinates such that n is the ordinate and m is the abscissa, and little crosses (×), or nodes, mark each

{ m, n } coordinate, the resulting graph resembles a minefield of nodes (Figure 5). The nodes

representing the Nyquist frequency can be connected as a line of slope equal to 2 crossing the origin at



{0,0}, herebynamedtheNyquist line. For clarity, Figure 5 has been drawn so that nodes on the fight-

hand side of the Nyquist line (m > n/2) have been excluded.

In Figure 5, the regions on each side of the Nyquist line have been labeled as 'T' and "II" for a

particular reason. Region I is the region where classic signal aliasing is defined. Region II defines the

domain where sub-Nyquist distortions, the subject of this paper, are defined. It is in this region where

useful waveform display occurs. The ratio between a signal frequency and the sampling frequency is

for all practical purposes a "random" ratio somewhere in Region II, and hopefully misses all the nodes.

In Fourier theory, non-sinusoidal signals contain several or many sinusoidal components. One or

more of the component harmonic frequencies of a useful waveform could happen to lie very near a

Region II node. It would then be possible for those components to be severely distorted. The

importance and seriousness of the modulation would depend on the amplitude of the affected

component relative to the overall signal amplitude.

A conjecture will now be made. It is also possible to consider that the envelope distortions which

occur in Region II are really a form of alias, a "sub-Nyquist" alias. Therefore, in this report, Region I

aliases could be named "Type I aliases." Similarly, Region II modulations could be named "Type II
aliases."

5. CONCLUSIONS

In waveforms, statistical data, and images, sample aliasing due to system coincidences can occur in

one of two domains as defined by the Nyquist frequency line in Figure 5. The two domains have the
characteristic that:

a) Classical aliasing in Region I occurs anytime where m and n are defined as in Equation 4,

i.e., m and n are real numbers such that n > 2m.

b) Region II distortion occurs for any positive real integers m and n where

1 < m < _n where
2

n > 2 and m and n are mutually prime. The integers m and n separately can be products

of prime numbers without affecting these conclusions. These mutually prime integers

and products rn and n form a mathematical field of possible trouble points, or nodes.

System designers should avoid Region II nodes whenever possible if they are

implementing systems which do not perform adequate waveform reconstruction

before presenting plots which display critical information.

This report has shown that a new domain of distortion, in Region II, has subtle implications for the

fabrication of systems using digital waveform sampling. Except for television, where the effects of

swimming color bands are obvious and even obnoxious, there has not been a great deal of attention

focused on this type of alias. However, in the future, engineers and statisticians should determine what

impact the Region II distortion may have their data before drawing conclusions.

Finally, in this report, no detailed analysis has been done to see if the modulation effects around a

Region II node result in extra peaks in the power spectrum indicating signal power is aliased into

undesirable frequencies. No claim is made that the Region II distortions result in real signal power



being lost from the sampled signal. However, we are concerned that in rare cases the envelope

distortions could be interpreted as modulation and cause serious consequences in error detection

systems and feedback control systems.
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Figure 1. An actual waveform captured with a
commercial digital thermal strip chart recorder. The
sample rate in the strip chart recorder was measured as
12170 Hz. The signal was from a sine-wave signal
generator set to 1367 Hz. Thus the ratio of signal
frequency to sample rate was 0.1130649, or almost
exactly 6/53. The maximum percentage modulation
error _" depends on determining the distribution of
samples near the envelope peak, as in Equation 15.
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Figure 2. An waveform captured with a commercial
digital storage oscilloscope and saved as a graphics

file. The sample rate is shown. The sine wave input
frequency on Channel 1 was 113.20754 kHz from a

commercial 1Volt peak-to-peak synthesized
waveform generator.

Figure 3. This image was photo_aphed off the screen of a
color television with a 35mm film camera. An 8x10 print

of the negative was scanned on a high resolution scanner

and cropped. It should be noted that this figure is neither a
proof that the patterns are are caused only by the Moire'

effect, nor that they are specifically caused by sub-Nyquist
distortions.

Figure 4. A 512 x 484 video image is carefully

synthesized from a raster line which is a raised
sine wave sampled in the ratio 6/53. NOTE: The

exact video effects are often obscured by Moire'
effects induced by the software and hardware

used to actually print this image. In addition, this
image has been given a histogram stretch to

emphasize the banding.
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Figure 5. A subset of the infinite field of points (nodes)

m

representing the prime fraction --- is shown above. Both the
n

domain and range of the set of points extends to infinity, but the

numerator m becomes more sparse. This field shows

possibilities such as 53/6 which is of type
m

n I * n2

but does not

show equally valid possibilities like
m 1 _m 2

n 1*n 2

and so forth.
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